ISSN: 2320-7329

http://www.ayurlog.com

July-Sept: 2025 | Volume: 13th | Issue: 3rd

NATIONAL JOURNAL OF RESEARCH IN AYURVED SCIENCE

Article Received Date: 12/08/2025 Reviewed on Date: 24 /09/2025 Accepted on: 23/10/2025

The Role of AI Tools and Their Implementations in Śālākya-Tantra in the Present Era

Rajendra Dhate, *M.S. (Shalakyatantra)* Professor & HOD, Department of Śālākya-Tantra, R. A. Podar Medical College (*Ayu*), Worli, Mumbai-18

Author Correspondence: rajudhate@gmail.com

Abstract

encompassing Śālākya-Tantra, Netra (ophthalmology), Karņa (otology), Nāsā (rhinology), Mukha–Danta (oral/dental), Kantha (laryngo-pharyngeal), and (head), addresses the supraclavicular region and traditionally relies on keen observation, careful history, and deft procedures. Simultaneously, modern Artificial Intelligence (AI) has advanced in medical imaging, language understanding, signal processing, clinical decision support, and simulation. This work maps the landscape of AI tools relevant to Śālākya-Tantra.

The methodology utilized a narrative review and practice-oriented synthesis, integrating current AI capabilities with classical Ayurvedic principles, including nidāna pañcaka, doṣa-doṣya-saṃmūrcchanā, srotas, and kriyākalpās such as tarpana, putapāka, anjana, nasya, and karṇapūraṇa. A pragmatic roadmap and evaluation framework were also proposed.

Five main clusters of impact emerged: (1) AI for vision and otoscopy triage and follow-up;

(2) acoustic analysis for *kantha* and nasosinusal disorders; (3) Natural Language Processing (NLP) over regional-language and *Sanskrit* texts for classical–contemporary knowledge mapping; (4) educational autofeedback systems, such as *OSCE* autoscoring, aligned to *Miller's Pyramid*; and (5) operational AI for *tele-Śalākya*, outcome tracking of *kriyākalpās*, and appointment prioritization.

AI holds the potential to strengthen Śālākya-Tantra by enhancing standardization, early detection, and continuity of care while still respecting Ayurvedic therapeutics and diagnostics. Safe and equitable adoption necessitates explainability, contextual datasets, bias control, rigorous prospective evaluation, and data governance aligned with ABDM.

Keywords: Śālākya-Tantra, Ayurveda, Ophthalmology, Otology, NLP, Medical Imaging, Telemedicine, Kriyākalpā, Miller's Pyramid, Ethics.

1. Introduction

Śālākya-Tantra is recognized as one of the eight major branches of Ayurveda. It specifically deals with diseases situated above the clavicle, focusing on the ear, eye, head, nose, throat, and oral cavity. Classical texts place high importance on pratyakṣa (inspection), anumāna (inference), upamāna (comparison), and a rich procedural armamentarium. This procedural scope includes therapies such as tarpana, putapāka, anjana, nasya, karṇapūraṇa, and śirobasti.

AI is currently capable of pattern recognition and prediction at scale. For Śālākya-Tantra, AI naturally intersects with areas that are image-intensive (e.g., nasal endoscopy, otoscopy, slit-lamp images, fundus photos), signal-rich (e.g., breathing acoustics, voice), and heavy in knowledge text (e.g., case records, Sanskrit ślokas). This research connects the capabilities of AI with the specific needs of Śālākya-Tantra, proposing a staged adoption plan and necessary guardrails for AYUSH teaching hospitals.

2. Background and Rationale

2.1 Diagnostic Pillars in Śālākya-Tantra

The foundation of $\hat{S}\bar{a}l\bar{a}kya$ -Tantra diagnosis rests upon several pillars:

- 1. *Nidāna pañcaka*: This includes *nidāna*, *pūrvarūpa*, *rūpa*, *upaśaya*, and *samprāpti*.
- Doṣa-doṣya-saṃmūrcchanā and srotas considerations, particularly within Netra/Karna/Nāsā.

- 3. *Pramāṇa parīkṣā*: Methods such as inspection, special tests, local examination, and palpation.
- 4. *Kriyākalpā*: Procedures aimed at restoring local tissue function and *dosic* balance.

2.2 Rationale for AI Adoption Now

AI adoption is timely due to several developments:

- The growing utility of smartphonegrade otoscopes and cameras.
- Policy momentum in India supporting interoperable data and digital health records.
- Improvements in NLP for low-resource languages, including Kannada, Marathi, Sanskrit, and Hindi.
- The growth of on-device inference and explainable imaging AI.

3. Taxonomy of AI Tools for Śālākya-Tantra

A taxonomy of relevant AI tools can be clustered into six categories:

1. Imaging AI (Computer Vision):

- Netra: Involves classification and segmentation for OCT/OCT-A, meibography, corneal topography, anterior segment, and fundus photos.
- Karna: Uses otoscopy image classifiers to determine tympanic membrane status, or

- identify otitis externa/media, and otomycosis.
- Nāsā & Kanţha: Applies endoscopy video analysis for identifying laryngitis, deviated septum, or polyps, along with dental/oral lesion detection.
- 2. **Signal/Audio AI**: Used for assessing *TMJ*, chewing sounds, screening *OSA* risk via breathing and snore sounds, and analyzing voice acoustics for nasality indices, vowel perturbation, and dysphonia.
- 3. Natural Language Processing (NLP): Involves knowledge graphs that link kriyākalpā ↔ signs/symptoms ↔ rūpa. It also includes aligning Sanskrit/Prakrit verses to modern terminology and automating case-sheets in regional languages.
- 4. **Decision Support & Prediction**: Provides triage scores by combining images, vitals, *avasthā*, *hetu*, and *doṣa prakṛti*. It also facilitates relapse-risk prediction following *nasya* or *tarpana* and appointment prioritization.
- 5. Education & Simulation: Offers *OSCE* auto-scoring using checklists and video mapped to *Miller's Pyramid* (*Knows* → *Knows How* → *Shows How* → *Does*). Examples include virtual otoscopy or slit-lamp simulators.

6. **Operations &** *Tele-Śālākya*: Includes procedural safety checklists, remote triage, reminder systems, and stock forecasting for *disposables*, *lepa*, *taila*, and *ghṛta*.

4. High-Value Clinical Use-Cases

4.1 *Netra* (Ophthalmology)

AI assists in screening and triage by providing on-device detection of red-flags, such as *papilledema* cues, proliferative changes, and corneal ulcer risk. For dry eye and lid margin disease, AI measures tear film breakup analysis and *meibography*. Progress dashboards help evaluate *śirobasti*, *tarpana*, and *anjana* adjuncts. Automated visual acuity workflows are provided via gamified apps for follow-up and camps.

4.2 Karna (Otology)

Smart otoscopy uses image classifiers to flag suspicion of cholesteatoma, perforations, or otomycosis, which is relevant for clinical studies. AI-assisted audiometry and classification of tympanograms are available for hearing health. Adherence nudges can be provided for ear-drop regimens, including *arka taila* or other medicated oils, where safety and tradition permit.

4.3 *Nāsā* (Rhinology) & *Kanṭha* (Laryngology)

Endoscopy analysis aids in scoring mucosal edema and polyp burden, and visualizing treatment response for *nasya* protocols. Voice analytics provide objective measures of *śabda* quality in *kanthagat rogas* and track progress following herbal steam or *kaval/gandūṣa*.

4.4 Mukha-Danta (Oral/Dental) & Śira

AI screening aids in camps for detection of precancer, lichen planus, or ulcers. For headache patterns, AI assists in phenotype clustering to differentiate migraine patterns from *vāta-kapha* dominated sinusitis, helping tailor *nasya*, *śirobasti*, or diet counsel.

5. Aligning AI with Ayurvedic Diagnostics

AI outputs must serve to augment *yukti* (clinical reasoning), not replace it. This requires careful alignment:

- 1. **Feature mapping**: Model features (e.g., corneal staining area) should be linked to *pūrvarūpa/rūpa* descriptors.
- 2. **Contextual priors**: Models must incorporate *Ayurvedic* context by including *prakṛti*, *āhāra-vihāra*, *deśa* (locale), and *ṛtu* (season).
- 3. **Outcome measures**: Beyond simple accuracy, models should learn from labels tracking *upaśaya–anupaśaya* responses following *kriyākalpā*.

6. Education: *Miller's Pyramid*, *OSCE*, and Competency

AI can be integrated into competency assessment using *Miller's Pyramid*:

- *Knows*: AI generates *MCQs* from classical texts and lecture notes.
- *Knows How*: Short-answer stations test *doṣa* inference based on lid signs.
- **Shows How**: Video *OSCE* assesses the student performing a slit-lamp exam, with AI checking the sequence, illumination angle, hand hygiene, and documentation of findings.

• *Does*: AI provides feedback trends and summarizes case-mix in workplace-based assessment.

An OSCE Auto-Feedback Checklist provides specific assessment criteria, such as systematic inspection of vartma margins, pakṣma, and bhru. It identifies meibomian plugging, trichiasis, and madarosis, and integrates the upaśaya plan and doṣa inference. AI provides a skill-gap report and timestamped feedback.

7. Research Opportunities Unique to Śālākya-Tantra

Opportunities for unique research include:

- NLP over classical texts to map ślokalevel evidence to modern phenotypes and create open ontologies for Netra/Karṇa/Nāsā.
- Prospective validation of AI triage for dry eye and otomycosis within *kriyākalpā* care pathways.
 - Digital twins used to predict patient response to karṇapūraṇa/nasya/tarpana using local signs and baseline constitution.
 - *Herbo-pharmacology* mining through knowledge graphs linking *dravya guṇa* to tissue tropism in *ENT/ocular* contexts.
 - Community screening models utilizing village-level smartphone fundus capture/otoscopy combined with AI triage and AYUSH follow-up.

8. Ethics, Safety, and Governance

AI tools must be treated as a "second reader," ensuring the clinician retains primacy and clear fail-safes are in place for red-flag escalation, prioritizing patient safety.

Ethical deployment requires curating datasets from Indian and regional populations to ensure representativeness, covering different age ranges, comorbidities, and skin tones. Explainability features, such as *saliency maps* and feature attributions, are mandated to support *yukti* and learning. Data privacy must comply with national digital frameworks, including ABDM alignment, consent, and de-identification. Informed consent and transparency are crucial, ensuring patients understand when AI is utilized and its influence on decisions. It is vital to guard against the oversimplification or "algorithmic reductionism" of dosa-dhātumala concepts.

9. Implementation Roadmap

A suggested roadmap for an *AYUSH* Teaching Hospital involves four phases:

- **Phase 0 (Readiness)**: Form an *AI-Śālākya* Task Force (IT, clinicians, ethics, legal). Define priority usecases (e.g., voice analysis for dysphonia, dry-eye follow-up, smart otoscopy for otomycosis triage). Approve consent forms and data governance *SOPs*.
- **Phase 1 (Pilot)**: Deploy a basic classifier and smartphone otoscope (offline capable). Start a prospective registry documenting $r\bar{u}pa$, images, $\dot{s}\bar{a}r\bar{i}rika$ prakrti, demographics, interventions $(kriy\bar{a}kalp\bar{a})$, and outcomes. Train clinicians, calibrate

thresholds, and minimize false reassurance.

- Phase 2 (Scale): Integrate with *EMR*. Launch *OSCE* auto-feedback for two procedures (e.g., otoscopy and lid exam). Enable *tele-Śalākya* for follow-ups via voice/photo uploads. Add *NLP* templates for bilingual case-sheets (English + local language), mapping terms to *ICD* descriptors and classical terms.
- Phase 3 (Sustain & Publish): Audit equity (subgroup performance), safety metrics, and patient experience. Expand to oral-lesion screening and nasal endoscopy. Publish pilot results and, when feasible, open-source deidentified datasets/ontologies.

10. Conclusion

AI can significantly augment Śālākya-Tantra by standardizing documentation, sharpening observation. and extending care communities, while successfully preserving therapies classical and reasoning. Responsible deployment demands clinician leadership, context-rich data, ethical guardrails, and rigorous evaluation. When these factors are in place, AI serves as a sahakārī (ally) to the Śālākya clinician, improving outcomes across Kantha, Mukha-Danta, Nāsā, Karna, Netra, and Śira.

11. References:

1. 1.Review articles on AI in ophthalmology (fundus/OCT, dry eye).

- 2. 2.Studies on smartphone otoscopy and automated otitis/otomycosis classification.
- 3. 3.Voice/acoustic AI in laryngology and sleep breathing disorders.
- 4. 4.Method papers on medical NLP for low-resource languages/Sanskrit digitization.
- 5. 5.Guidelines on AI ethics, explainability, and digital health data governance in India.
- 6. 6.Classical Ayurvedic texts: Suśruta Saṃhitā Uttara Tantra (Śālākya); Aṣṭāṅga Hṛdaya, with standard translations/commentaries

Conflict of Interest: None

Source of funding: Nil

Cite this article:

The Role of AI Tools and Their Implementations in Śālākya-Tantra in the Present Era Rajendra Dhate

Ayurlog: National Journal of Research in Ayurved Science- 2025; (13) (03): 01-06

